• About
  • Keywords

Toxoplasma gondii & Human Phenotype

Compendium of Known Effects and Ongoing Research

storage

The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

March 26, 2011
Prandovszky, E., Gaskell, E., Martin, H., Dubey, J. P., Webster, J. P., McConkey, G. A.
Plos One 2011; 6: ARTN e23866 10.1371/journal.pone.0023866
Click for abstract
The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

Tagged: behavior, cells, impact, infection, mice, neurons, rats, risk, Schizophrenia, storage

Mental health

Topics

  • Behavior 105
  • Cognitive functions 64
  • Mental health 439
  • Morphology 6
  • Motor functions 10
  • Personality 36
  • Physical health 134
  • Reproduction 36
  • Reviews 40
  • Sensory functions 3
  • Uncategorized 2

Archives

Recent articles

  • Mortality Patterns of Toxoplasmosis and Its Comorbidities in Tanzania: A 10-Year Retrospective Hospital-Based Survey February 6, 2020
  • The role of latent toxoplasmosis in the aetiopathogenesis of schizophrenia–the risk factor or an indication of a contact with cat? February 6, 2020
  • The Association between Toxoplasma gondii Infection and Risk of Parkinson’s Disease: A Systematic Review and Meta-Analysis February 6, 2020

Recent Comments

    Meta

    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org

    Copyright © 2023 Toxoplasma gondii & Human Phenotype.

    ToxoBehavior WordPress Theme by Jelena Braum