• About
  • Keywords

Toxoplasma gondii & Human Phenotype

Compendium of Known Effects and Ongoing Research

oxidative stress

The known and missing links between Toxoplasma gondii and schizophrenia

October 6, 2016
Elsheikha, H.M., Busselberg, D., Zhu, X.Q.
Metabolic Brain Disease 2016; 31: 749-759.
Click for abstract
Toxoplasma gondii, an intracellular protozoan parasite, has a striking predilection for infecting the Central Nervous System and has been linked to an increased incidence of a number of psychiatric diseases. Several in vitro and in vivo studies have shown that T. gondii infection can affect the structure, bioenergetics and function of brain cells, and alters several host cell processes, including dopaminergic, tryptophan-kynurenine, GABAergic, AKT1, Jak/STAT, and vasopressinergic pathways. These mechanisms underlying the neuropathology of latent toxoplasmosis seem to operate also in schizophrenia, supporting the link between the two disorders. Better understanding of the intricate parasite-neuroglial communications holds the key to unlocking the mystery of T. gondii-mediated schizophrenia and offers substantial prospects for the development of disease-modifying therapies.

Tagged: bipolar disorder, c-reactive protein, cell-cultures, central-nervous-system, Dopamine, host-pathogen, infected mice, interaction, interferon-gamma, long-term potentiation, mental illness, obsessive-compulsive disorder, oxidative stress, psychosis, Schizophrenia, Toxoplasma gondii

Mental health

The potential of immune biomarkers to advance personalized medicine approaches for schizophrenia

May 28, 2015
Cox, D., Chan, M. K., Bahn, S.
Journal of Nervous and Mental Disease 2015; 203: 393-399
Click for abstract
Molecular profiling studies have helped increase the understanding of the immune processes thought to be involved in the etiology and pathophysiology of psychiatric disorders such as schizophrenia. Current therapeutic interventions with first-and second-generation antipsychotics are suboptimal. Poor response rates and debilitating side effects often lead to poor treatment compliance. This highlights the pressing need to identify more effective treatments as well as objective biomarker based tests, which can help predict treatment response and identify diagnostic subpopulations. Such tests could enable early detection of patients who will benefit from particular therapeutic interventions. In this review, we discuss studies relating to dysfunctions of the immune system in patients with schizophrenia and the effects of antipsychotic medication on the molecular components of these systems. Immune system dysfunction may in part be related to genetic risk factors for schizophrenia, but there is substantial evidence that a wide range of environmental factors ranging from exposure to infectious agents such as influenza and Toxoplasma gondii to HPA axis dysfunction play an important role in the etiopathogenesis of schizophrenia. Ongoing research efforts, testing therapeutic efficacy of anti-inflammatory agents used as add-on medications are also discussed. From a therapeutic perspective, these represent the initial steps toward novel treatment approaches and more effective patient care in the field of mental health.

Tagged: antipsychotic drugs, antipsychotic medication, biomarkers, c-reactive protein, cytokine alterations, herpes-simplex-virus, infectious agents, maternal exposure, n-acetylcysteine, oxidative stress, personalized medicine, placebo-controlled trial, prenatal exposure, Schizophrenia

Mental health

Autism spectrum disorders may be due to cerebral toxoplasmosis associated with chronic neuroinflammation causing persistent hypercytokinemia that resulted in an increased lipid peroxidation, oxidative stress, and depressed metabolism of endogenous and exogenous substances

October 19, 2010
Prandota J.
Research in Autism Spectrum Disorders 2010; 4: 119-155
Click for abstract
Worldwide, approximately 2 billion people are chronically infected with Toxoplasma gondii with largely yet unknown consequences. Patients with autism spectrum disorders (ASD) similarly as mice with chronic toxoplasmosis have persistent neuroinflammation, hypercytokinemia with hypermetabolism associated with enhanced lipid peroxidation, and extreme changes in the weight resulting in obesity or wasting. Data presented in this review suggest that environmental triggering factors such as pregnancy, viral/bacterial infections, vaccinations, medications, and other substances caused reactivation of latent cerebral toxoplasmosis because of changes in intensity of latent central nervous system T. gondii infection/inflammation and finally resulted in development of ASD. Examples of such environmental factors together with their respective biomarker abnormalities are: pregnancy (increased NO, IL-1 beta, TNF-alpha, IL-6, IL-10, prolactin: decreased IFN-gamma, IL-12), neuroborreliosis (increased IL-1 beta, sIL-1R2, TNF-alpha, IFN-gamma, IL-6, IL-10, IL-12, IL-18, transforming growth factor-beta 1 (TGF-beta 1)), vital infections (increased IL-1 beta, IL-6, IL-8, TNF-alpha, IFN-gamma/alpha/beta,TGF-beta 1), thimerosal (increased IL-5, IL-13; decreased IFN-gamma,TNF-alpha,IL-6, IL-12p70, NOS), and valproic acid (increased NO, reactive oxygen species; decreased TNF-alpha, IL-6, IFN-gamma). The imbalances in pro- and antiinflammatory processes could markedly hinder [lost defense mechanisms important for immune control of the parasite, such as the production of NO, cytokines, and reactive oxygen/nitrogen species, tryptophan degradation by indoleamine 2,3-dioxygenase and/or tryptophan 2,3-dioxygenase, limitation of the availability of intracellular iron to T gondii, and the mechanisms mediated by an IFN-gamma responsive gene family. These fluctuations could result in a recurrent profuse multiplication of T. gondii in the brain associated with persistent neuroinflammation, chronic overproduction of pro- and antiinflammatory cytokines, and NO causing increased oxidative stress, and significantly depressed activity of several enzymes including cytochrome P450 monooxygenase family responsible for metabolism of physiological substrates and xenobiotics, such as steroids, fatty acids, prostaglandins, drugs, pollutants, and carcinogens, finally leading to development of ASD. This reasoning may be supported by such abnormal metabolic events as: (1) patients with ASD have significantly decreased melatonin levels caused by marked deficit in acetylserotonin methyltransferase activity, possibly resulting from maternal and/or fetal/postnatal overproduction of NO, characteristic for this clinical entity; (2) thimerosal inhibited both insulin-like growth factor-1- and dopamine-stimulated methylation reactions, and depressed methionine synthase activity, the metabolic events important for promoting normal neurodevelopment; (3) valproic acid, a strong histone deacetylase inhibitor, have potent anti-T. gondii activity. Thus, patients with ASD should be tested for T. gondii infection. (C) 2009 Elsevier Ltd. All rights reserved

Tagged: abnormalities, abnormality, acid, acids, aktivity, autism, autistic spectrum disorders, availability, beta, biomarker, brain, cell-mediated-immunity, central-nervous-system, cerebral, Cerebral toxoplasmosis, change, changes, chronic, chronic neuroinflammation, chronic toxoplasmosis, clinical, congenital cytomegalovirus-infection, consequence, consequences, control, could, cytochrome, cytochrome p450, cytokine, cytokines, data, defense, defense-mechanisms, deficit, degradation, depressed enzyme activities, development, disorder, disorders, drug, drugs, environmental, environmental factors, enzyme, enzymes, event, events, example, families, family, fluctuation, fluctuations, gene, gene families, gene family, gondii, gondii infection, growth, growth-factor-beta, hepatic drug-metabolism, herpes-simplex-virus, histone, histone deacetylase, hypercytokinemia, hypermetabolic state, il-1, il-10, il-12, il-13, il-6, immune, immune irregularities, important, infection, infections, inhibitor, insulin-like, intensity, interferon-inducing agents, intracellular, iron, latent, level, limitation, lipid, lipid-peroxidation, maternal, mechanism, mechanisms, medication, melatonin, metabolism, methionine, methylation, methyltransferase, methyltransferase aktivity, mice, multiplication, nervous, nervous system, neurodevelopment, nf-kappa-b, nitric oxide, nitric-oxide synthase, obesity, or, overproduction, oxidative stress, oxygen, p-450-dependent monooxygenase systems, Parasite, patient, patients, people, persistent, pregnancies, pregnancy, proces, prolactin, prostaglandins, reaction, reactivation, review, species, spectrum, spectrum disorders, spektra, steroids, stress, substrate, systém, t, tgf-beta, tnf-alpha, Toxoplasma, Toxoplasma gondii, toxoplasmosis, tryptophan, tumor-necrosis-factor, vaccination, vital, weight, xenobiotics

Mental health

Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: Cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii.

October 30, 2006
Carter CJ.
Schizophrenia Bulletin 2006; 35: 1163-1182
Click for abstract
Over 130 genes have been associated with schizophrenia in genetic studies. None of these has reached a sufficient level of confidence to be accepted as a universal susceptibility gene and problems of replicability suggest that many may be false positives. Nevertheless, these genes can be grouped into distinct families related to glutamate transmission (in particular related to NMDA receptor function), the control of synaptic plasticity, dopaminergic transmission, oxidative stress, glutathione and quinone metabolism and oligodendrocyte viability. These families mirror the processes disrupted in the schizophrenic brain and certain gene families can be linked together to form a clearly defined signalling cascade involved in the phenomenon of NMDA receptor-dependent long-term potentiation and synaptic plasticity, that may be interconnected with oligodendrocyte and oxidative stress-related pathways. Many of the protein products of these genes interact with each other, forming complex integrated networks. Certain high-interest genes (for example DISC1, NRG1, COMT) may exert multiple effects on different areas of these pathways, while others exert more specific effects on certain branches. The convergence of a large number of genes on a definable signaling network raises the possibility of numerous interactions between gene candidates, and suggests that a targeted multigenic pathway approach would be useful in gene association studies. (c) 2006 Elsevier B.V. All rights reserved.

Tagged: association, catechol-o-methyltransferase, cell-death, cortical pyramidal neurons, dendritic spine density, DNA microarray, Dopamine, gene, glutathione, influenza hemagglutinin peptide, multigenic, nitric-oxide synthase, nmda, nmda receptor, oligodendrocyte, oxidative stress, polymorphism, prefrontal cortex, quinone, Schizophrenia, synaptic plasticity

Mental health

Topics

  • Behavior 105
  • Cognitive functions 64
  • Mental health 439
  • Morphology 6
  • Motor functions 10
  • Personality 36
  • Physical health 134
  • Reproduction 36
  • Reviews 40
  • Sensory functions 3
  • Uncategorized 2

Archives

Recent articles

  • Mortality Patterns of Toxoplasmosis and Its Comorbidities in Tanzania: A 10-Year Retrospective Hospital-Based Survey February 6, 2020
  • The role of latent toxoplasmosis in the aetiopathogenesis of schizophrenia–the risk factor or an indication of a contact with cat? February 6, 2020
  • The Association between Toxoplasma gondii Infection and Risk of Parkinson’s Disease: A Systematic Review and Meta-Analysis February 6, 2020

Recent Comments

    Meta

    • Log in
    • Entries feed
    • Comments feed
    • WordPress.org

    Copyright © 2023 Toxoplasma gondii & Human Phenotype.

    ToxoBehavior WordPress Theme by Jelena Braum